Éster
En la química, los ésteres son compuestos orgánicos en los cuales un grupo orgánico (simbolizado por R' en este artículo) reemplaza a un átomo de hidrógeno (o más de uno) en un ácido oxigenado. Un oxoácido es un ácido inorgánico cuyas moléculas poseen un grupo hidroxilo (–OH) desde el cual el hidrógeno (H) puede disociarse como un ión hidrógeno, hidrón o comúnmente protón, (H+). Etimológicamente, la palabra "éster" proviene del alemán Essig-Äther (éter de vinagre), como se llamaba antiguamente al acetato de etilo.
En los ésteres más comunes el ácido en cuestión es un ácido carboxílico. Por ejemplo, si el ácido es el ácido acético, el éster es denominado como acetato. Los ésteres también se pueden formar con ácidos inorgánicos, como el ácido carbónico (origina ésteres carbónicos), el ácido fosfórico (ésteres fosfóricos) o el ácido sulfúrico. Por ejemplo, el sulfato de dimetilo es un éster, a veces llamado "éster dimetílico del ácido sulfúrico".
NOMENCLATURA
La nomenclatura de los ésteres deriva del ácido carboxílico y el alcohol de los que procede. Así, en el etanoato (acetato) de metilo encontramos dos partes en su nombre:
• La primera parte del nombre, etanoato (acetato), proviene del ácido etanoico (acético)
• La otra mitad, de metilo, proviene del alcohol metílico (metanol).
En el dibujo de la derecha se observa la parte que procede del ácido (en rojo; etanoato) y la parte que procede del alcohol (en azul, de etilo).
Luego el nombre general de un éster de ácido carboxílico será "alcanoato de alquilo" donde:
• alcan-= raíz de la cadena carbonada principal (si es un alcano), que se nombra a partir del número de átomos de carbono. Ej.:Propan- significa cadena de 3 átomos de carbono unidos por enlaces sencillos.
• oato = sufijo que indica que es derivado de un ácido carboxílico. Ej: propanoato: CH3-CH2-CO- significa "derivado del ácido propanoico".
• de alquilo: Indica el alcohol de procedencia. Por ejemplo: -O-CH2-CH3 es "de etilo"
En conjunto CH3-CH2-CO-O-CH2-CH3 se nombra propanoato de etilo.
PROPIEDADES FISICAS
Los ésteres pueden participar en los enlaces de hidrógeno como aceptadores, pero no pueden participar como dadores en este tipo de enlaces, a diferencia de los alcoholes de los que derivan. Esta capacidad de participar en los enlaces de hidrógeno les convierte en más hidrosolubles que los hidrocarburos de los que derivan. Pero las ilimitaciones de sus enlaces de hidrógeno los hace más hidrofóbicos que los alcoholes o ácidos de los que derivan. Esta falta de capacidad de actuar como dador de enlace de hidrógeno ocasiona el que no pueda formar enlaces de hidrógeno entre moléculas de ésteres, lo que los hace más volátiles que un ácido o alcohol de similar peso molecular.
Muchos ésteres tienen un aroma característico, lo que hace que se utilicen ampliamente como sabores y fragancias artificiales. Por ejemplo:
• butanoato de metilo: olor a Piña
• salicilato de metilo (aceite de siempreverde o menta): olor de las pomadas Germolene™ y Ralgex™ (Reino Unido)
• octanoato de heptilo: olor a frambuesa
• etanoato de pentilo: olor a plátano
• pentanoato de pentilo: olor a manzana
• butanoato de pentilo: olor a pera o a albaricoque
• etanoato de octilo: olor a naranja.
Los ésteres también participan en la hidrólisis esterárica: la ruptura de un éster por agua. Los ésteres también pueden ser descompuestos por ácidos o bases fuertes. Como resultado, se descomponen en un alcohol y un ácido carboxílico, o una sal de un ácido carboxílico:
PROPIEDADES QUIMICAS
En las reacciones de los ésteres, la cadena se rompe siempre en un enlace sencillo, ya sea entre el oxígeno y el alcohol o R, ya sea entre el oxígeno y el grupo R-CO-, eliminando así el alcohol o uno de sus derivados. La saponificación de los ésteres, llamada así por su analogía con la formación de jabones, es la reacción inversa a la esterificación: Los ésteres se hidrogenan más fácilmente que los ácidos, empleándose generalmente el éster etílico tratado con una mezcla de sodio y alcohol, y se condensan entre sí en presencia de sodio y con las cetonas.
Halogenuro de ácido
Un haluro de ácido (o haluro de acilo) es un compuesto derivado de un ácido al sustituir el grupo hidroxilo por un halógeno.
Si el ácido es un ácido carboxílico, el compuesto contiene un grupo funcional -COX. En ellos el carbono está unido a un radical o átomo de hidrógeno (R), a un oxígeno mediante un doble enlace y mediante un enlace simple (sigma) a un halógeno (X).
Al resto procedente de eliminar el grupo OH se lo llama acilo. Los halogenuros de ácido se nombran, entonces, anteponiendo el nombre del halógeno al del resto acilo, el cual se nombra reemplazando la terminación "oico" del ácido del que deriva por "ilo" Por ejemplo, el resto acilo derivado del ácido acético (CH3-CO-) es el acetilo. El cloruro de ácido derivado del acetico, se nombrara por lo tanto, cloruro de acetilo.
Estos compuestos dan reacciones de sustitución nucleofílica con mucha facilidad y son utilizados en reacciones de acilación (como la de Frieldel-Crafts).
El grupo hidroxilo del ácido sulfónico también puede ser reemplazado por un halogeno, dando lugar a un ácido halosulfonico. Por ej., el ácido clorosulfonico resulta de reemplazar un grupo hidroxilo por un atomo de cloro.
Nomenclatura de Haluros
Regla 1. La IUPAC nombra los haluros de alcanoilo reemplazando la terminación -oico del ácido con igual número de carbonos por -oilo. Además, se sustituye la palabra ácido por el halógeno correspondiente, nombrado como sal.
Regla 2. Se toma como cadena principal la de mayor longitud que contiene el grupo funcional. La numeración se realiza otorgando el localizador más bajo al carbono del haluro.
Regla 3. Este grupo funcional es prioritario frente a las aminas, alcoholes, aldehídos, cetonas, nitrilos y amidas (que deben nombrarse como sustituyentes). Tan sólo tienen prioridad sobre él los ácidos carboxílicos, anhídridos y ésteres.
Regla 4. Cuando en la molécula existe un grupo prioritario al haluro (ácido carboxílico, anhídrido, éster), el haluro se nombra como: halógenocarbonilo.
Regla 5. Cuando el haluro va unido a un anillo, se toma el ciclo como cadena principal y se nombra como: halogenuro de carbonilo.
PROPIEDADES FISICAS Y QUIMICAS
Los halogenuros de acilo no tienen hidrógenos ácidos, no se asocian por puentes de hidrógeno y tienen puntos de ebullición menores que los ácidos de los que provienen. Son solubles en la mayoría de los disolventes orgánicos y tienen olores irritantes que posiblemente se deban a que reaccionan fácilmente con la humedad del aire y experimentan la hidrólisis a fin de producir el ácido clorhídrico. Los halogenuros de acilo se hidrolizan con agua produciendo el ácido correspondiente. Frecuentemente esta reacción es exotérmica y muy rápida. Los halogenuros de ácidos aromáticos no reaccionan muy rápidamente con agua, a temperatura ambiente. Esto se debe, probablemente, a que la carga positiva sobre el carbono del acilo se puede dispersar, en parte, en el anillo aromático. Por lo que, el átomo de carbono del acilo de un halogenuro aromático es menos electrofílico que el de un halogenuro alifático.
Los alcoholes primarios y secundarios reaccionan fácilmente con los halogenuros de ácido formando ésteres. Este método es excelente para la preparación de ésteres.
Los alcoholes terciarios reaccionan con los halogenuros de acilo, en presencia de una base o un metal activo, tal como magnesio, produciendo ésteres. En ausencia de la base o del metal, los halogenuros de ácido transforman los alcoholes terciarios en alquenos o halogenuros de alquilo terciarios. Los halogenuros de acilo también reaccionan con los fenoles produciendo ésteres; los fenoles tienen un grupo oxhidrilo directamente unido a un anillo aromático.
Los halogenuros de ácido reaccionan con el amoníaco y también con aminas primarias y secundarias produciendo amidas.
Los ácidos reaccionan con halogenuros de ácido, en presencia de piridina, produciendo anhídridos. Los halogenuros de ácidos reaccionan con peróxido de sidio formando peróxidos orgánicos. Los peróxidos de acilo son inestables y se descomponen fácilmente produciendo radicales libres. Por esta razón los peróxidos de acilo se emplean como iniciadores de reacciones por radicales libres. Los reactivos organometálicos son fuertemente neuclofílicos y es de esperarse que reaccionen con los halogenuros de ácido. Aunque se han empleado reactivos organometálicos de muchos metales distintos para hacerlos reaccionar con los halogenuros de ácido, los más usados son los organocádmicos, los cuales reaccionan con halogenuros de ácido produciendo cetonas.
ANHIDRIDOS
Los anhídridos se forman a partir de dos moles de un ácido carboxílico por eliminación de una molécula de agua. Los anhídridos cíclicos se forman a partir de ciertos ácidos dicarboxílicos a través del cierre interno del anillo y la pérdida de agua.
NOMENCLATURA.
Se nombran, en general igual que los ácidos de procedencia precedidos de la palabra anhídrido:
* Los anhídridos de ácido dicarboxílicos (un acido) se nombran sustituyendo la palabra ácido por anhídrido.
* Los anhídridos de ácido monocarboxílicos se nombran con la palabra anhídrido seguido de cada componente del ácido carboxílico en orden alfabético (sin la palabra ácido).
Para Nombrar
* Reconocer la cadena principal que pertenece al grupo funcional anhídrido (O).
* Dar el nombre de los ácidos carboxílicos de origen suprimiendo la palabra ACIDO.
* Debemos recordar que para numerar los radicales siempre debemos hacerlo empezando por el carbono que este unido al grupo funcional..
PROPIEDADES QUIMICAS
• Tienen bajos puntos de fusion y de ebullicion, son muy volatiles y generalmente tienen aromas irritantes.
• Son muy reactivos, reaccionan de manera exotermica con el agua y con otras sustancias nucleofilicas... son muy utiles en la sintesis de esteres y amidas.
• Son agentes acetilantes excelentes... por jemplo en la sintesis de Aspirina se utiliza el anhidrido acetico para acetilar al Acido Salicilico y asi generar Acido Acetil Salicilico.
AMIDAS
Una amida es un compuesto orgánico cuyo grupo funcional es del tipo RCONR'R'', siendo CO un carbonilo, N un átomo de nitrógeno, y R, R' y R'' radicales orgánicos o átomos de hidrógeno:
Se puede considerar como un derivado de un ácido carboxílico por sustitución del grupo —OH del ácido por un grupo —NH2, —NHR o —NRR' (llamado grupo amino).
NOMENCLATURA
• Regla 1. Las amidas se nombran como derivados de ácidos carboxílicos sustituyendo la terminación -oico del ácido por -amida.
• Regla 2. Las amidas son grupos prioritarios frente a aminas, alcoholes, cetonas, aldehídos y nitrilos.
• Regla 3. Las amidas actúan como sustituyentes cuando en la molécula hay grupos prioritarios, en este caso preceden el nombre de la cadena principal y se nombran como carbamoíl.
• Regla 4. Cuando el grupo amida va unido a un ciclo, se nombra el ciclo como cadena principal y se emplea la terminación -carboxamida para nombrar la amida.
Propiedades físicas
El grupo funcional amida es bastante polar, lo que explica que las amidas primarias, excepto la formamida
(p.f.=2.5 ºC), sean todas sólidas y solubles en agua. Sus puntos de ebullición son bastante más altos que los de los ácidos correspondientes, debido a una gran asociación intermolecular a través de enlaces de hidrógeno, entre el oxígeno negativo y los enlaces N—H, mucho más polarizados que en las aminas. Los puntos de fusión y de ebullición de las amidas secundarias son bastante menores, debido principalmente al impedimento estérico del radical unido al nitrógeno para la asociación. Como es natural, las amidas terciarias (sin enlaces N—H) no pueden asociarse, por lo que son líquidos normales, con puntos de fusión y de ebullición de acuerdo con su peso molecular.
No hay comentarios:
Publicar un comentario